THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 4

- 1. Let $\{(X_n, \mathfrak{T}_n)\}_{n \in \mathbb{N}}$ be a countable collection of topological spaces. Consider the product space $\prod_{n \in \mathbb{N}} X_n$ with the product topology $\mathfrak{T}_{\text{prod}}$. Show that if each (X_n, \mathfrak{T}_n) is Hausdorff, then $(\prod_{n \in \mathbb{N}} X_n, \mathfrak{T}_{\text{prod}})$ is also Hausdorff.
- 2. Let I = [0, 1] and $Y_x = \mathbb{R}$ for all $x \in I$. Consider the infinite product space

$$F = \prod_{x \in [0,1]} Y_x = \prod_{x \in [0,1]} \mathbb{R} = \{f : I \to \mathbb{R}\}$$

Define a sequence of elements $\{f_n\}_{n\in\mathbb{N}}\subset F$ by $f_n(x)=\frac{1}{n}$ and an element $f\in F$ by f(x)=0.

- (a) Show that f_n converges to f if F is equipped with the product topology.
- (b) * Show that f_n does not converges to f if F is equipped with the box topology.